• 欢迎访问IT乐园(o゚▽゚)o
  • 推荐使用最新版火狐浏览器和Chrome浏览器访问本网站。

吴恩达深度学习编程练习–Improving Deep Neural Networks第一周编程练习Gradient Checking

deeplearning fhy 7年前 (2017-10-20) 11340次浏览
文章目录[隐藏]

第一周 编程作业代码 Gradient Checking

1-dimensional gradient checking

# GRADED FUNCTION: forward_propagation
def forward_propagation(x, theta):
    """
    Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    
    Returns:
    J -- the value of function J, computed using the formula J(theta) = theta * x
    """
    
    ### START CODE HERE ### (approx. 1 line)
    J = theta * x
    ### END CODE HERE ###
    
    return J

# GRADED FUNCTION: gradient_check
def gradient_check(x, theta, epsilon = 1e-7):
    """
    Implement the backward propagation presented in Figure 1.
    
    Arguments:
    x -- a real-valued input
    theta -- our parameter, a real number as well
    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    
    Returns:
    difference -- difference (2) between the approximated gradient and the backward propagation gradient
    """
    
    # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.
    ### START CODE HERE ### (approx. 5 lines)
    thetaplus = theta + epsilon                                     # Step 1
    thetaminus = theta - epsilon                                   # Step 2
    J_plus = forward_propagation(x, thetaplus)              # Step 3
    J_minus = forward_propagation(x, thetaminus)         # Step 4
    gradapprox = (J_plus - J_minus) / (2 * epsilon)         # Step 5
    ### END CODE HERE ###
    
    # Check if gradapprox is close enough to the output of backward_propagation()
    ### START CODE HERE ### (approx. 1 line)
    grad = backward_propagation(x, theta)
    ### END CODE HERE ###
    
    ### START CODE HERE ### (approx. 1 line)
    numerator = np.linalg.norm(grad - gradapprox)                                        # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)             # Step 2'
    difference = numerator / denominator                                                      # Step 3'
    ### END CODE HERE ###
    
    if difference < 1e-7:
        print ("The gradient is correct!")
    else:
        print ("The gradient is wrong!")
    
    return difference

N-dimensional gradient checking

# GRADED FUNCTION: gradient_check_n
def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):
    """
    Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n
    
    Arguments:
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
    grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters.
    x -- input datapoint, of shape (input size, 1)
    y -- true "label"
    epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    
    Returns:
    difference -- difference (2) between the approximated gradient and the backward propagation gradient
    """
    
    # Set-up variables
    parameters_values, _ = dictionary_to_vector(parameters)
    grad = gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))
    # Compute gradapprox
    for i in range(num_parameters):
        # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
        # "_" is used because the function you have to outputs two parameters but we only care about the first one
        ### START CODE HERE ### (approx. 3 lines)
        thetaplus = np.copy(parameters_values)                                              # Step 1
        thetaplus[i][0] = thetaplus[i][0] + epsilon                                         # Step 2
        J_plus[i], _ = forward_propagation_n(X,Y,vector_to_dictionary(thetaplus))           # Step 3
        ### END CODE HERE ###
        
        # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
        ### START CODE HERE ### (approx. 3 lines)
        thetaminus = np.copy(parameters_values)                                             # Step 1
        thetaminus[i][0] = thetaminus[i][0] - epsilon                                       # Step 2        
        J_minus[i], _ = forward_propagation_n( X, Y, vector_to_dictionary(thetaminus) )     # Step 3
        ### END CODE HERE ###
        
        # Compute gradapprox[i]
        ### START CODE HERE ### (approx. 1 line)
        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)
        ### END CODE HERE ###
    
    # Compare gradapprox to backward propagation gradients by computing difference.
    ### START CODE HERE ### (approx. 1 line)
    numerator = np.linalg.norm(grad - gradapprox)                     # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)   # Step 2'
    difference = numerator / denominator                              # Step 3'
    ### END CODE HERE ###
    if difference > 1e-7:
        print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
    else:
        print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")
    
    return difference

 


IT 乐园 , 版权所有丨如未注明 , 均为原创丨本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:吴恩达深度学习编程练习–Improving Deep Neural Networks 第一周编程练习 Gradient Checking
喜欢 (2)
关于作者:
九零后挨踢男