第一周 编程作业代码 Gradient Checking
1-dimensional gradient checking
# GRADED FUNCTION: forward_propagation def forward_propagation(x, theta): """ Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x) Arguments: x -- a real-valued input theta -- our parameter, a real number as well Returns: J -- the value of function J, computed using the formula J(theta) = theta * x """ ### START CODE HERE ### (approx. 1 line) J = theta * x ### END CODE HERE ### return J # GRADED FUNCTION: gradient_check def gradient_check(x, theta, epsilon = 1e-7): """ Implement the backward propagation presented in Figure 1. Arguments: x -- a real-valued input theta -- our parameter, a real number as well epsilon -- tiny shift to the input to compute approximated gradient with formula(1) Returns: difference -- difference (2) between the approximated gradient and the backward propagation gradient """ # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit. ### START CODE HERE ### (approx. 5 lines) thetaplus = theta + epsilon # Step 1 thetaminus = theta - epsilon # Step 2 J_plus = forward_propagation(x, thetaplus) # Step 3 J_minus = forward_propagation(x, thetaminus) # Step 4 gradapprox = (J_plus - J_minus) / (2 * epsilon) # Step 5 ### END CODE HERE ### # Check if gradapprox is close enough to the output of backward_propagation() ### START CODE HERE ### (approx. 1 line) grad = backward_propagation(x, theta) ### END CODE HERE ### ### START CODE HERE ### (approx. 1 line) numerator = np.linalg.norm(grad - gradapprox) # Step 1' denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) # Step 2' difference = numerator / denominator # Step 3' ### END CODE HERE ### if difference < 1e-7: print ("The gradient is correct!") else: print ("The gradient is wrong!") return difference
N-dimensional gradient checking
# GRADED FUNCTION: gradient_check_n def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7): """ Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n Arguments: parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. x -- input datapoint, of shape (input size, 1) y -- true "label" epsilon -- tiny shift to the input to compute approximated gradient with formula(1) Returns: difference -- difference (2) between the approximated gradient and the backward propagation gradient """ # Set-up variables parameters_values, _ = dictionary_to_vector(parameters) grad = gradients_to_vector(gradients) num_parameters = parameters_values.shape[0] J_plus = np.zeros((num_parameters, 1)) J_minus = np.zeros((num_parameters, 1)) gradapprox = np.zeros((num_parameters, 1)) # Compute gradapprox for i in range(num_parameters): # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]". # "_" is used because the function you have to outputs two parameters but we only care about the first one ### START CODE HERE ### (approx. 3 lines) thetaplus = np.copy(parameters_values) # Step 1 thetaplus[i][0] = thetaplus[i][0] + epsilon # Step 2 J_plus[i], _ = forward_propagation_n(X,Y,vector_to_dictionary(thetaplus)) # Step 3 ### END CODE HERE ### # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]". ### START CODE HERE ### (approx. 3 lines) thetaminus = np.copy(parameters_values) # Step 1 thetaminus[i][0] = thetaminus[i][0] - epsilon # Step 2 J_minus[i], _ = forward_propagation_n( X, Y, vector_to_dictionary(thetaminus) ) # Step 3 ### END CODE HERE ### # Compute gradapprox[i] ### START CODE HERE ### (approx. 1 line) gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon) ### END CODE HERE ### # Compare gradapprox to backward propagation gradients by computing difference. ### START CODE HERE ### (approx. 1 line) numerator = np.linalg.norm(grad - gradapprox) # Step 1' denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox) # Step 2' difference = numerator / denominator # Step 3' ### END CODE HERE ### if difference > 1e-7: print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m") else: print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m") return difference