1)numpy.mat
将数组转化为矩阵
- numpy.mat(data, dtype=None)
- Interpret the input as a matrix.
Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to matrix(data, copy=False).
>>> x = np.array([[1, 2], [3, 4]]) >>> m = np.asmatrix(x) >>> x[0,0] = 5 >>> m matrix([[5, 2], [3, 4]])
2)numpy.shape
shape(a)
Return the shape of an array.
Parameters
a : array_like
Input array.
Returns
shape : tuple of ints
The elements of the shape tuple give the lengths of the
corresponding array dimensions.
See Also
alen
ndarray.shape : Equivalent array method.
Examples
>>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,)
3)numpy.eye
eye(N, M=None, k=0, dtype=<class ‘float’>)
Return a 2-D array with ones on the diagonal and zeros elsewhere.
Parameters
N : int
Number of rows in the output.
M : int, optional
Number of columns in the output. If None, defaults to N
.
k : int, optional
Index of the diagonal: 0 (the default) refers to the main diagonal,
a positive value refers to an upper diagonal, and a negative value
to a lower diagonal.
dtype : data-type, optional
Data-type of the returned array.
Returns
I : ndarray of shape (N,M)
An array where all elements are equal to zero, except for the k
-th
diagonal, whose values are equal to one.
See Also
identity : (almost) equivalent function
diag : diagonal 2-D array from a 1-D array specified by the user.
Examples
>>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]])
4)np.clip
def clip(a, a_min, a_max, out=None): """ Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Parameters ---------- a : array_like Array containing elements to clip. a_min : scalar or array_like Minimum value. a_max : scalar or array_like Maximum value. If `a_min` or `a_max` are array_like, then they will be broadcasted to the shape of `a`. out : ndarray, optional The results will be placed in this array. It may be the input array for in-place clipping. `out` must be of the right shape to hold the output. Its type is preserved. Returns ------- clipped_array : ndarray An array with the elements of `a`, but where values < `a_min` are replaced with `a_min`, and those > `a_max` with `a_max`. See Also -------- numpy.doc.ufuncs : Section "Output arguments" Examples -------- >>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8]) """
5)numpy.dot
dot(...) dot(a, b, out=None) Dot product of two arrays. For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of `a` and the second-to-last of `b`:: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) >>> a = [[1,2], [3,4]] >>> b = [[5,6], [7,8]] >>> np.dot(a, b) array([[19, 22], [43, 50]]) >>> [[1*5+2*7, 1*6+2*8], [3*5+4*7, 3*6+4*8]] [[19, 22], [43, 50]]
6)numpy.power
def power(x1, x2, *args, **kwargs): # real signature unknown; NOTE: unreliably restored from __doc__ """ power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. Note that an integer type raised to a negative integer power will raise a ValueError. Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`. Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. See Also -------- float_power : power function that promotes integers to float Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]]) """
生成从 0 到 100 的 10*10 随机数组
>>> import numpy as np >>> np.random.randint(0, 101, size=(10, 10), dtype=int) array([[96, 16, 5, 40, 82, 19, 88, 5, 0, 40], [66, 74, 17, 84, 98, 14, 46, 30, 17, 77], [69, 59, 59, 96, 98, 97, 52, 83, 39, 54], [86, 39, 46, 45, 76, 29, 15, 69, 71, 41], [83, 4, 43, 81, 25, 93, 25, 6, 81, 70], [76, 15, 16, 87, 53, 97, 60, 83, 36, 59], [85, 19, 49, 17, 34, 70, 23, 20, 98, 59], [36, 49, 30, 72, 16, 83, 2, 6, 73, 44], [10, 3, 80, 57, 47, 48, 19, 4, 11, 17], [ 7, 67, 47, 77, 56, 22, 26, 43, 41, 52]])